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1 Abstract

For this project, we have 2000 training and 500 test observations, containing information on movie reviews
(words) and rating labels (1 for positive and 0 for negative). Our main goal is to e↵ectively implement
algorithms that can predict whether or not a movie receives a positive rating based on its review. After
constructing a standardized uni-gram TF-IDF matrix, we had roughly 17,000 stem features. To improve
e�ciency, we decided to reduce the dimensionality of our problem. Our initial approach to dimension
reduction was through PCA via the power method; however, due to running time issues, we ultimately
reduced dimensionality by selecting the top n stem terms from positive and negative reviews. We then
implemented logistic regression through gradient descent. When conducting k-folds cross-validation for this
algorithm, we found that n = 1000 returned the lowest cross-validation error rate of 5.35%. This process
took 20 minutes after using parallel computing. After running logistic gradient descent with n = 1000, our
team was left with a final test error rate of 20%. This process took 1 to 2 minutes after implementing step-
halving, setting the appropriate initial guess, and selecting the largest standard tolerance of 0.001. Using
K-NN and cross-validation, we identified n = 100 and k = 8 as optimal hyperparameters with the lowest
cross-validation error of 23.70%. When applied to the test set, this yielded an error of 26.20% in 18 seconds
using parallel computing. To speed up the process of calculating Euclidean distances, we used the default R
function norm(), leveraging LAPACK written in a lower-level programming language (Anderson et al.).

2 Introduction and Motivation

When releasing blockbuster films, producers often want to know how it is being received by test audiences.
This is because an overall negative reception may require them to expend additional resources on editing
movie scenes and scheduling interview events in order to avoid controversy and generate excitement. However,
manually reading through thousands of reviews and determining whether each one is ”positive” or ”negative”
can be expensive and time-consuming. It also leaves room for a lot of human error given the sheer scale
of reading and documentation involved. To assist producers with this dilemma, our team has focused
research on e↵ectively implementing machine learning algorithms to predict movie ratings based on reviews.
However, this does not mean that things have become any easier, as there are numerous factors to consider
when developing algorithms from scratch. This includes, but is not limited to, iterative initialization and
parallel computing. This report describes, in detail, our encounters with these types of technical details as
we implemented two major classification algorithms: logistic regression and k-nearest neighbors.

3 Research Question

How can we e↵ectively implement algorithms to predict whether or not a movie receives a positive rating
based on its review?

4 Data Description

The original dataset utilized in this project comprises 50,000 IMDB reviews, which are equally divided into
25,000 samples for the training and test sets. The labels are distributed evenly between positive and negative
reviews (25k each). However, only a random subset of this dataset will be used, consisting of 2,000 training
set samples and 500 test set samples, with a total of 2,500 movie reviews. The positive and negative reviews
are balanced in this subset. Additionally, to mitigate the influence of correlated ratings, no more than 30
reviews are included for each movie in the entire collection. The train and test sets contain disjoint sets of
movies, negating any significant performance improvement resulting from the memorization of unique terms
associated with specific movies and their observed labels. Negative reviews have a score less than or equal
to 4 out of 10, while positive reviews have a score greater than or equal to 7 out of 10. Reviews with neutral
ratings are not included in the train/test sets. The dataset includes information on unique IMDB IDs, movie
reviews, and ratings. For the purpose of this project, a binary column is created, with negative reviews
labeled as 0 (rating of 4 or below) and positive reviews as 1 (rating of 7 or above).
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5 Exploratory Analysis

5.1 Word Length Histograms

Figure 1: Word Length Histograms for Positive and Negative Reviews

The distributions of word length for both positive and negative reviews were plotted, disregarding typos
and special characters. The resulting histograms were found to be skewed to receive some outlier positive
reviews having word lengths approaching 1500. These unusually lengthy reviews may have been written
by professional movie reviewers or promoters, who may have been required to adhere to a word count or
provide a comprehensive review highlighting all aspects of the movie. The mean word length for negative
reviews was found to be 237, while for positive reviews it was 245. This similarity in mean word length
can be explained by the fact that people are generally more willing to write longer reviews expressing their
enjoyment of a movie, while they may be less motivated to write longer reviews to express dissatisfaction,
or may not even bother to write a review for a movie they found unsatisfactory.

However, the histograms of the positive and negative word lengths are very similar. We used the raw
data since cleaning every review would be time ine�cient and have a lot of room for human error. We
initially attempted to clean the data, however, it was too time-consuming. Nonetheless, through our at-
tempts, we noticed several types of special characters in both negative and positive reviews, such as ( or ),
< br/ >< br/ >, and < U + 0085 >, which makes the review become longer than expected.

The histogram uses an algorithm that splits the reviews based on spaces. This means that special char-
acters were counted as words, along with any stray letters. For example. reviews may have typos such as
”tim e” which would count as two words. Because of this and many other factors in the reviews, it is simply
not possible to fully clean the data set nor consider every possible typo and special character. Perhaps after
cleaning, the histograms would change, but it is not possible to do so since there is a lot of room for human
error. If the typos and special characters were not considered words, the average review length for negative
and positive reviews would become lower.

There are three possibilities for the histograms. Typos and special characters are equally prevalent in
both reviews, which would mean the average positive review length is similar to the negative review length,
and therefore positive and negative reviewers are equally passionate. The second possibility is that positive
reviews have more typos and special characters, which would mean they were less passionate. Since these
reviewers liked the movie, they possibly wanted to say some kind words about the movie and not much more,
while negative reviewers needed to describe exactly why they disliked the movie. The third possibility is
that negative reviews have more special characters and typos, possibly from their anger.

Nonetheless, since the histogram for positive and negative reviews are basically the same, we will not use
review word length to di↵erentiate between positive and negative reviews.
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5.2 Word Clouds

Figure 2: Word Clouds for Positive and Negative Reviews

In addition to examining word length, we generated separate word clouds, with the green one on the left
representing positive reviews and the red one on the right representing negative reviews. Before discussing
the meaning behind these word clouds, we must first describe the generative process.

It began with us pre-processing all of the training reviews. In our case, pre-processing involved remov-
ing punctuations, numbers, and stop words. This comes from the assumption that these things do not
contribute as much meaning and will not help distinguish between positive and negative reviews. It is also
worth noting that we are considering ”film”, ”films”, ”movie”, and ”movies” as stop words. This is because
our data is movie-related, which makes it reasonable to assume that the aforementioned terms will appear
across most positive and negative reviews. With these terms being prevalent in both groups, we can further
assume that they will not be helpful in distinguishing between positive from negative and vice versa.

We then proceeded to stem each review. Our team did initially experiment with lemmatization; however, it
often led to many setbacks. For instance, when lemmatizing ”amaze”, ”amazing”, and ”amazingly”, we’d
hope that all three terms would be converted to the same term. Unfortunately, only ”amaze” and ”amazing”
were converted to ”amaze” while ”amazingly” remained as ”amazingly”. Although lemmatization would’ve
led to more interpretable terms, our main goal is to e↵ectively implement an algorithm that returns good
predictions. As such, stemming still served as a viable option to summarize raw text review. We will also
later illustrate in this section how stemming does not completely remove interpretability and how it can still
yield fairly comprehensible results.

After this, we generated a uni-gram term-frequency inverse-document-frequency (TF-IDF) matrix. The
reason why we implemented TF-IDF weighting is that we wanted to add more weight to ”exclusive” stem
terms that either appeared often in positive reviews or often in negative reviews. TF-IDF weighting also
assigns less weight to stem terms that are prevalent across both types of reviews. Ultimately, this emphasizes
any underlying stem di↵erences between positive and negative reviews.

We then scaled this matrix so that each column had mean 0 and standard deviation 1. The details sur-
rounding this will be further elaborated on in later sections, but it is primarily to have the proper matrix
setup for principal component analysis (PCA). It has also been empirically shown to speed up convergence
for iterative algorithms such as gradient descent (Balasubramanian).
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Using this standardized matrix, we then generated the word clouds shown in Figure 2. With these word
clouds, the color simply indicates which word cloud belongs to which rating group. As mentioned before, the
green word cloud represents positive reviews while the red word cloud represents negative reviews. Mean-
while, the hue, size, and location of each stem represent its prominence. For instance, dark, large stem terms
towards the center such as ”excel”, ”great”, and ”love” are the most prominent terms in positive reviews.
Similarly, we can interpret ”bad”, ”worst”, and ”bore” as the most prominent terms in negative reviews.

This provides us with a lot of powerful insight because it not only highlights how distinct positive and
negative reviews are but how intuitive the division is. In retrospect, many of the prominent terms revealed
by these word clouds are not just terms that we’d used to describe movie reviews but positive and negative
life experiences overall. For instance, when landing a job, we often say that it was ”excellent”, ”great”, or
”lovely”. Meanwhile, when failing a class, we often say that it was ”bad”, ”the worst”, or ”boring”.

6 Dimension Reduction

6.1 Principal Component Analysis (PCA)

Despite the work done to explore and understand our dataset, we still faced one significant problem: di-
mensionality. As mentioned earlier, we transformed 2000 raw text reviews into a uni-gram TF-IDF matrix;
however, this matrix has roughly 17,000 columns, with each one representing a unique stem/feature. This
was a major issue because the default R function glm() was unable to fit a model within a reasonable time
frame. We know that it would take more than 5 minutes given that we waited that long and received no
results. In order for us to implement an e�cient algorithm that could return results within a reasonable
time frame, dimension reduction ultimately became our next priority.

Now, our initial approach to dimension reduction was through PCA. With PCA, it is crucial that each
column of the data matrix is, at the very least, centered at 0 in order to use singular value decomposition
(SVD) to extract singular values and principal components. Given how we have already standardized our
uni-gram TF-IDF matrix, we know that we satisfy this condition and can proceed with SVD. However, a
major issue occurred when using the default R function svd(). Similar to glm(), we know that svd() would
take more than 5 minutes given that we waited that long and received no results. Like before, this is likely
due to the sheer scale of our data matrix.

And so, our team decided to utilize an iterative algorithm known as the power method in order to ex-
tract the first set of singular values for our standardized uni-gram TF-IDF matrix. The basic idea behind
this algorithm is that we extract the first set of eigenvectors for XX

T where X is our standardized uni-gram
TF-IDF matrix. We then use these eigenvectors to obtain the first set of eigenvalues for XX

T . From there,
we then take the square root of these eigenvalues. This is because the square root of the eigenvalues for
XX

T are the singular values for X.
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Figure 3: Singular Values for first 30 Principal Components

Figure 3 shows the results of this algorithm, with the x-values representing principal component indices and
the y-values representing singular values. As we’d expect, the singular values decrease as we extract more
principal components; however, the issue with this particular graph is that we are not seeing any significant
dip in the singular values. The reason why we’d like to see a significant dip is that it signifies the lack
of spread/information being retained from any following principal component. Therefore, we could simply
disregard any principal component that proceeds this significant dip. However, as mentioned before, we
are not seeing any significant dip. Instead, we are seeing a significant amount of spread/information being
retained from the first 30 principal components.

Figure 4:
Scatterplot of Strongly Correlated Data

Figure 5:
Singular Values from Strongly Correlated Data

Figure 6:
Scatterplot of Weakly Correlated Data

Figure 7:
Singular Values from Weakly Correlated Data
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In order to gain some understanding as to why we are not seeing a significant dip, we must turn to our
simulation study. As a way of testing our self-defined R function for the power method, we generated two
types of datasets. The first dataset has 100 observations where variables x1 and x2 are strongly correlated,
as shown in Figure 4. When applying our function to this dataset, we see a significant dip between the
first and second singular values, as shown in Figure 5. This is to be expected, given the strong correlation
prevalent in the first dataset. As we can see in Figure 4, most of the spread/information can be retained
along the vector (1, 1), while a small amount is retained along the perpendicular vector (�1, 1).

Meanwhile, the second dataset has 100 observations designed so that variables x1 and x2 were weakly
correlated, as shown in Figure 6. When applying our function to this dataset, we have a gradual dip between
the first and second singular values, as shown in Figure 7. This is to be expected, given the weak correlation
prevalent in the second dataset. As we can see in Figure 6, the approximate direction where the spread is
maximized is (1, 1). Although less spread/information is retained along the perpendicular vector (�1, 1),
the di↵erence is not significant.

Based on the results from this simulation study, it is possible that there are many weakly correlated vari-
ables in our standardized uni-gram TF-IDF matrix. Given the sheer scale of this matrix, it is di�cult to
extract the correlation value between each feature; however, it is likely that many of these values are small in
magnitude, and it is possible that this is one reason why we are not seeing a significant dip with the first 30
singular values. Although it is possible for a significant dip to occur after the 30th singular value, it would
not be e�cient to continue using the power method. This is because extracting the first 30 singular values
still took the algorithm roughly 5 to 6 minutes.

6.2 Word Clouds

Given the discouraging results we were seeing with PCA, we decided to reexamine our word clouds. As
mentioned earlier, a major takeaway from these visuals is that they not only reveal a clear divide between
positive and negative reviews but a distinction that is rather intuitive. Prominent stem terms such as ”ex-
cel”, ”great”, ”love”, ”bad”, ”worst”, and ”bore” are not only terms that we’d use to describe movie reviews
but positive and negative life experiences overall.

From this, our team concluded that one possible, albeit crude, way of reducing the dimensionality is to
select the top n stem terms from each rating group. If n = 3, ”excel”, ”great”, and ”love” would be the
top stem terms that we’d have from positive reviews while ”bad”, ”worst”, and ”bore” would be the terms
from negative reviews. We’d then expect positive reviews to have some terms from our ”top positive stem
bank” and to have very few terms from our ”top negative stem bank”. In other words, if n = 3, we’d expect
most positive reviews to have ”excel”, ”great”, and/or ”love” while lacking ”bad”, ”worst”, and ”bore”.
Meanwhile, we’d anticipate the opposite pattern for negative reviews.

As we will illustrate in later sections, this method of dimension reduction can yield very promising results
and provides several benefits when it comes to implementation and interpretation.
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7 Logistic Regression

7.1 Description

P (Yi = 1|Xi = xi) =
1

1 + e�(�0+�T xi)
(1)

In this case, Yi represents some rating label, which takes values 1 and 0. The value 1 represents a positive
rating label while 0 represents a negative rating label. In addition to this, Xi represents some text review.
Now, if we assume that the probability of Yi being 1 given some Xi is equal to Equation 1, we can model
the log odds as follows

log(
h(xi)

1� h(xi)
) = �0 + �

T
xi (2)

In this case, h(xi) is simply a compact way of reexpressing Equation 1. Given that we are selecting the top
n stem terms from positive and negative reviews, we can reexpress the log odds as follows

log(
h(xi)

1� h(xi)
) = �0 + �1exceli + �2greati + ... �nlovei + �n+1badi + �n+2worsti + ... �n+nborei (3)

In this case, �1, �2, ... �n, �n+1, �n+2, ... �n+n are the entries of our � vector. Given that we have a
standardized uni-gram TF-IDF matrix, each stem feature can take any real values. As such, it is important
to emphasize that we cannot technically think of each stem feature as a simple indicator variable. However,
there are still some notable patterns worth observing. For instance, when a stem feature has little to no
presence in a review, we see that it is often small in magnitude. However, when the presence is much more
significant, we see that it is often large in magnitude.

log(
h(xi)

1� h(xi)
) = �0 + �1exceli + �2greati + ... �nlovei (4)

log(
h(xi)

1� h(xi)
) = �0 + �n+1badi + �n+2worsti + ... �n+nborei (5)

As a result, we expect most positive reviews to e↵ectively have the log odds shown in Equation 4. This is
because, as mentioned before, we expect most positive reviews to have some terms from our ”top positive
stem bank” and to have very few terms from our ”top negative stem bank”. And so, we should see some
stem features from our ”top positive stem bank” to be large in magnitude and most stem features from our
”top negative stem bank” to be small in magnitude. Although ”small in magnitude” does not technically
mean 0, it is worth noting that we will e↵ectively be treating it as such, which is why Equation 4 only has
stem features from our ”top positive stem bank”. The reason why we are doing this is that it reveals a
powerful trick that we can exploit for our gradient descent algorithm, which we will further elaborate on
later in this section. When it comes to negative reviews, we’d expect to e↵ectively have the log odds shown
in Equation 5 and essentially the opposite pattern as positive reviews.
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loss = �
2000X

i=1

yi ⇤ log[h(xi)] + (1� yi) ⇤ log[1� h(xi)] (6)

And so, our goal now is to find the optimal �0 value and � vector. This can be attained by minimizing
the training logistic loss shown in Equation 6 (Balasubramanian). It is worth noting that other sources
may describe di↵erent methods such as maximum likelihood estimation; however, it can be shown that
maximizing the likelihood is the same as minimizing the logistic loss (refer to the appendix). With that said,
we will continue the report by describing our process strictly in terms of minimizing logistic loss to avoid
any unnecessary confusion. Now, when it comes to minimizing logistic loss, there is no closed-form solution.
As a result, our team had to implement an iterative algorithm known as gradient descent.

✓  ✓ �H
�1rloss (7)

We did initially consider other iterative algorithms such as the Newton-Raphson method, with its update
procedure shown in Expression 7. In this case, ✓ represents a vector with its first entry being �0 and its
remaining entries being the entries of our � vector. H represents the Hessian matrix associated with our loss
function while rloss represents the gradient of our loss function with respect to ✓ (refer to the appendix for
the derivation of rloss). With this said, we quickly turned down the Newton-Raphson method given that it
conflicted with our main goal. Recall, our goal is to implement an e�cient, predictive algorithm. However, as
shown in Expression 7, the Newton-Raphson method requires the inverse of a Hessian matrix, which would
be especially large if n = 1000. Now, taking the inverse of a matrix is computationally expensive as it is;
however, if n = 1000, it is likely that the Newton-Raphson algorithm would have run for countless minutes
before returning any results.

✓  ✓ � ↵rloss (8)

To avoid this potential issue, we chose to implement gradient descent, with its update procedure shown in
Expression 8. Rather than spending a significant amount of time finding H

�1, we set a learning rate ↵ that
controls how quickly we descend to our minimum loss point. Like with other iterative algorithms, we must
also set the appropriate tolerance level and initial guess to avoid prolonged convergence.

Now, when setting an initial guess for the �0 value and � vector that minimizes logistic loss, our team
admittedly assigned the value 0 to each entry. This was primarily inspired by the gradient descent algo-
rithm implemented by Youtube user Carestonee, as they also had zeroes as their initial guess (Carestonee).
However, we eventually discovered a powerful trick that could improve e�ciency and cut the total number
of iterations in half. Rather than having zeroes as our initial guess, we initially set �0 as 0, the first n entries
of � as 1, and the last n entries of � as -1. As we alluded to earlier, this powerful trick comes from the
fact that we are e↵ectively treating stem features that are ”small in magnitude” as 0. This then allows us
to have simpler log odds equations for positive and negative reviews, as shown in Equation 4 and Equation
5 respectively. By examining these equations, we can quickly observe notable patterns surrounding the log
odds.

Recall, a log odds greater than 0 signifies that a review is more likely to be positive than negative; therefore,
it would be sensible to classify the said review as positive. Based on Equation 4, we can see that one way
for positive reviews to have positive log odds is when the first n entries of �, AKA �1, �2, ... �n, are positive
values. Conversely, a log odds less than 0 signifies that a review is more likely to be negative than positive;
therefore, it would be sensible to classify the said review as negative. Based on Equation 5, we can see that
one way for negative reviews to have negative log odds is when the last n entries of �, AKA �n+1, �n+2,
... �n+n, are negative values. Based on these statements, one way for our algorithm to correctly classify as
many reviews as possible is to have the first n entries of � be a positive value and the last n entries of � be
a negative value. And so, one reasonable initial guess is to have the first n entries of � be positive 1 and the
last n entries of � be negative 1.
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Now, all that we are left with is �0. In this case, �0 represents the log odds when stem features from our
”top positive stem bank” and ”top negative stem bank” is exactly 0. However, there is no occurrence of
this throughout our entire standardized uni-gram TF-IDF matrix. And so, it is di�cult to extract any
meaningful interpretation of �0 that can be used to improve convergence. With no better initial guess for
�0, our team settled for a base initial guess of 0.

In addition to this, we set our tolerance level at the largest standard value of 0.001. This not only al-
lows us to return fairly acceptable results but to return results within a quicker time frame than smaller
tolerance levels. Although smaller tolerance levels often lead to more accurate results, our primary goal is
e�ciency. And so, for this project, we are willing to sacrifice some accuracy as long as our algorithm, as
mentioned before, returns acceptable results within a quick time frame.

Through trial and error, we also found that one of the best initial learning rates was set at 0.01. How-
ever, this was not perfect and still caused minor issues. For instance, a 0.01 learning rate occasionally
increased the logistic loss during certain iterations, causing the convergence process to take much longer. In
order to speed up convergence, our team decided to implement step-halving, which involved us scaling the
learning rate by 1

2 each time the logistic loss increased.

After setting the appropriate initial guess, tolerance level, and learning rate, our team carried out k-folds
cross-validation in order to find the optimal n AKA the number of top stem terms from positive and negative
reviews. According to machine learning writer Rukshan Pramoditha, 5 and 10 are good standard folds to
use (Pramoditha). However, when taking into account the sheer scale of our dataset along with our goal of
e�ciency, we ultimately opted for 5-folds. By doing so, we would be fitting fewer models, which would result
in shorter running times.

Despite n taking any positive integer, we only tested 400, 600, 800, and 1000. We have 400 as our minimum
possible n because we assume any logistic model with less than that would have a small ”stem bank”. This
would likely result in many positive and negative reviews having identical log odds as neither group would
contain anything from a stem bank with very few terms. With observations from di↵erent rating groups
looking the same, classification becomes much more di�cult and unclear. The reason why we have incre-
ments of 200 and why we have 1000 as our maximum possible n is purely from a computational perspective.
Even when utilizing parallel computing to cross-validate 400, 600, 800, and 1000, our run time was still as
high as 20 minutes. This is especially large given how we are excluding an entire set of n values larger than
1000. It is here where we must emphasize the limitation of our algorithm as it is possible that the n which
minimizes logistic loss is larger than 1000. With this said, it is equally important to emphasize our primary
goal of e�ciency, which is di�cult to achieve when our algorithm takes too long to test many large n values.

7.2 Results

After conducting k-folds cross-validation, we found that n = 1000 returned the lowest cross-validation error
rate of 5.35%. When utilizing parallel computing techniques, k-folds cross-validation took roughly 20 minutes.
When using n = 1000 to fit a logistic model on our training set, we were left with a final test error rate of
20%. Altogether, logistic model fitting and testing took roughly 1 to 2 minutes.
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7.3 Discussion

One thing that our team found rather surprising was the di↵erence between the cross-validation error and the
final test error. Recall, k-folds cross-validation is a means of estimating the test error; however, it appears
that we have greatly underestimated this value. One possible explanation for this is the small number of
folds that we selected. Although fewer folds speed up computation, they also create a smaller sample of
errors, which often results in unstable, unreliable mean values. It may also be because our training set is too
small. When this occurs, patterns from the population may not be accurately represented. For instance, the
divide between positive and negative reviews might be more clear in our training set than in the population,
which would cause our cross-validation error to be smaller than our final test error.

For our gradient descent algorithm, it is also worth noting that �1, �2, ... �1000 were not all positive,
with 1.9% being negative. Furthermore, �1001, �1002, ... �2000 were not all negative, with 2.2% being posi-
tive. Recall, when n = 1000, �1, �2, ... �1000 represent the coe�cients for the top 1000 positive stem terms
while �1001, �1002, ... �2000 represent the coe�cients for the top 1000 negative stem terms. As mentioned
before, we expected the first 1000 coe�cients to be positive and the last 1000 coe�cients to be negative.
One possible explanation as to why this is not apparent could be that our tolerance level is too large. With
a large tolerance, our gradient descent algorithm may have stopped too early and returned a result that is
close yet slightly distant from the true minimum point. And so, it is possible that �1, �2, ... �1000 would
have all reached positive values and that �1001, �1002, ... �2000 would have all reached negative values if our
tolerance level was smaller.

P (Yi = 1|X(1)
i = x

(1)
i , X

(2)
i = x

(2)
i ) =

1

1 + e�[1+2x(1)
i +4x(2)

i ]
(9)

P (Yi = 1|X(1)
i = x

(1)
i , X

(2)
i = x

(2)
i ) =

arctan[�4 + 2ex
(1)
i � x

(2)
i ] + ⇡

2

⇡
(10)

Additionally, our team conducted a simulation study to test our self-defined R algorithm for logistic gradient
descent. This first involved generating two distinct datasets. The first dataset has 1000 observations and Yi

was generated using Equation 9, satisfying the logistic regression assumption. The second dataset also has
1000 observations but Yi was generated using Equation 10, violating the logisitic regression assumption.

Figure 8:
Simulated Test Data and Logistic DB where
Logistic Regression Assumption Satisfied

Figure 9:
Simulated Test Data and Logistic DB where
Logistic Regression Assumption Violated

We then carried out an 80-20 train-test split for each dataset. Figure 8 shows our test observations from the
first dataset along with the decision boundary (DB) that our logistic gradient descent algorithm fits. In this
scenario, we are left with a final test error rate of 0%. This low value makes sense since we generated the
first dataset in a way that satisfies the logistic regression assumption. Meanwhile, Figure 9 shows our test
observations from the second dataset along with the DB that our logistic gradient descent algorithm fits. In
this scenario, we are left with a final test error rate of 11%. Now, it makes sense for this value to be larger
given that we generated the second dataset in a way that violates the logistic regression assumption. The
reason why it is important to discuss these findings is that they provide an explanation behind our final test
error rate of 20%. Based on our simulation study, one can argue that 20% is quite high and that it could be
because we violated the logistic regression assumption. In these situations, we can lower our final test error
rate by implementing other algorithms such as K-Nearest Neighbors (K-NN).
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8 K-Nearest Neighbors (K-NN)

8.1 Description

It is important to note that we will continue to use the variable ’n’ to denote stem size throughout the rest of
this section. We decided to use K-NN after running two simulations to determine what algorithms give the
lowest test errors. We wanted to see if K-NN can obtain a low test error rate to determine whether K-NN is
an appropriate method for our project. For the first simulation (Figure 8), we generated the data in a way
where the decision boundary would be linear; this data would be more appropriate for logistic regression.
Using K-NN, it obtained an error rate of 0 with the appropriate k = 4,5,6. In the second simulation, we
intentionally created data with a nonlinear decision boundary, which is better suited for K-NN since it does
not require linear assumptions of the data. The scatter plot (Figure 9) for this simulation revealed some red
and green points mixed within the opposing group, suggesting that error rates would likely increase regard-
less of the method used. Nonetheless, using K-NN with an optimal k of 5 or 7, we achieved a low error rate of
5.5%, which is considered excellent. It is also lower than our error rate using logistic regression. In general,
K-NN performs better than logistic regression when the decision boundary is non-linear, as expected. These
simulations covered linear and nonlinear decision boundaries for binary classification. After both simulations
achieved low error rates with appropriate choices of k, we concluded that K-NN is a suitable method to be
included in our project.

Before using K-NN, we first performed cross-validation using k-fold with 5 folds to optimize the hyper-
parameters for K-NN. Cross-validation divides our training data into train and validation subsets. These
subsets are called folds, and we chose to use 5 folds because the number balances between bias and variance.
This ensured that it would not underfit nor overfit our data.

Afterwards, we used the training data to determine which n gives the lowest test error. To determine
the optimal value of k for our K-NN algorithm, we tested the range of k values from 1 to 10. We chose
this range because it strikes a balance between computational e�ciency and error rate, which is particu-
larly important given the high-dimensional nature of our dataset. It is the most optimal for large and high
dimensional data since testing more than 10 k values often becomes computationally expensive and time-
consuming, while testing fewer k values does not provide enough information. There are limitations of K-NN
in high-dimensional settings, but testing using this range of k is reasonable (Ning). Therefore, we used k
values from 1 to 10 for the number of stems words ranging from 100 to 1000. We chose to go up to 1000
rather than all 2000 of the dataset because going any higher than 1000 would be extremely computationally
expensive.

Our dataset consists of a training set and a test set, where the number of columns corresponds to the number
of stem words used plus one column for the binary label of each observation. The number of rows indicates
the number of observations included in either the training or test set. When using the K-NN algorithm, the
distance between instances plays a crucial role in determining the output for a new instance.

One commonly used distance metric in K-NN is the Euclidean distance, which measures the distance between
two points in a multidimensional space. Specifically, the Euclidean distance between two rows, denoted as
(x11, x12, ..., y1) and (x21, x22, ..., y2), is computed (Anderson et al.). In K-NN, the algorithm searches for
the k nearest neighbors to the new instance based on the Euclidean distance. Once the k nearest neighbors
are identified, the majority class or average value of the k neighbors is assigned to the new instance as its
predicted class or regression output. Thus, Euclidean distance is used in K-NN to evaluate the similarity
between instances in a multidimensional space and to identify the K nearest neighbors for prediction.

Due to the high-dimensional nature of our dataset, we decided to optimize our code by switching from a
for-loop to a sapply function. This is because matrix multiplication is faster than for-loops. However, the
computational speed was still slow due to the curse of dimensionality. To address this issue, we decided
to implement parallel computing wherever applicable in our K-NN algorithm. As a result, we were able to
significantly increase the computational speed.
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8.2 Results

Figure 10: Relationship between k and test errors at n=100

After performing cross-validation by splitting the training set into validation and training subsets, we deter-
mined that a n of 100 and a value of k = 8 produced the lowest error rate. Figure 10 displays the performance
of the K-NN algorithm for n=100 with di↵erent k values. Notably, we observed the minimum train error to
be 23.70% with a running time of 315 seconds.

We then applied these parameters to the test set, resulting in an error rate of 26.20% and a computa-
tional time of approximately 18 seconds. Based on these findings, our algorithm performed relatively well,
achieving an accuracy of approximately 74%. In practical terms, if we receive a new movie review, we will
analyze its word usage to identify any matches with our positive or negative stem words. Depending on
the number of positive or negative stem words identified, we will classify the review as either positive or
negative. On average, our algorithm misclassified 26% of new movie reviews.

8.3 Discussion

Since the smallest n performed best, we determined that it is related to the curse of dimensionality, which oc-
curs when working with high-dimensional data and can also negatively a↵ect algorithms such as K-NN. Since
this algorithm works by finding the k closest neighbors to a given data point based on the distance metric
used, in high-dimensional spaces, the distance between points becomes increasingly large, and the di↵erence
between the nearest and farthest neighbors becomes smaller. As the number of dimensions increases, the
volume of the space increases exponentially, leading to the sparsity of the data, and making it challenging
to find meaningful patterns and relationships. This also leads to a significant increase in computational
complexity and the risk of overfitting.

It is also worth noting that the k-fold cross-validation underestimated the test error. Cross-validation gave
us a test error rate of 23.70%, while the actual test error rate was 26.20%. The di↵erence between the two
is not too significant, however, the relatively minor underestimation could be because of the small training
set size, which results in the population not being accurately represented. Additionally, the number of folds
we selected for the cross-validation may have been too small, resulting in unstable and unreliable mean
values. We chose to use 5 folds as a trade-o↵ between computational power and error rate, although ideally,
leave-one-out cross-validation would be preferred because it would give us more training and test sets, which
would give us more samples, and therefore a higher accuracy. Nonetheless, we decided not to use it since it
would be too computationally expensive.
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9 Conclusion

In summary, we found that n = 1000 returned the lowest cross-validation error rate (5.35%) for logistic
regression, which took roughly 20 minutes. After running logistic gradient descent with n = 1000, we were
left with a final test error rate of 20%, which took roughly 1 to 2 minutes. For K-NN, we found that n = 100
and k = 8 were the optimal hyperparameters, yielding the lowest cross-validation error rate of 23.70%. When
applied to the test set, we received a final test error rate of 26.20% in just 18 seconds.

Based on these results, there are several things worth reflecting on. For instance, the computation time
for our K-NN algorithm was shorter than our logistic algorithm. This is likely connected to the fact that our
K-NN algorithm utilizes parallel computing while our logistic algorithm uses a simple for loop. However, it
is worth noting that this is the best that we could do since we are minimizing logistic loss through iterative
techniques, which use information from previous steps. Despite its computational advantage, our K-NN
algorithm yields a larger test error than our logistic algorithm. One possible explanation could be the curse
of dimensionality. In other words, K-NN tends to perform worse when the dimensions of a problem are high.

In addition to logistic regression and K-NN, other classification algorithms that we considered implementing
include support vector machines, random forests, and neural networks. Support Vector Machines (SVMs)
would be applicable because they are e↵ective at finding the best hyperplane that separates positive and
negative examples in the feature space, which is the goal of binary classification. SVMs can handle high-
dimensional data, such as text data, and can capture nonlinear relationships between features using a variety
of kernel functions. Random Forests would also be applicable because they can handle correlated features
and are less prone to overfitting than individual decision trees. This is important when dealing with text
data, which can have many correlated features (words) that may not be informative on their own but can be
useful in combination. Neural Networks, such as multilayer perceptrons (MLPs) and convolutional neural
networks (CNNs), are e↵ective for text classification tasks because they can learn complex nonlinear rela-
tionships between the input features and the target variable. This is important in text classification because
the meaning of a sentence or phrase can be highly dependent on the context and may not be captured by
individual words alone. However, neural networks can be computationally expensive to train, especially for
large datasets.

With these things in mind, it is important to emphasize that our goal is e↵ective algorithm implemen-
tation rather than selection. And so, we leave the debate open on which algorithm is ”better”. The only
thing that we stress is for people to carefully consider what they value. Do they value computation time or
accuracy? What is a ”good enough” computation time? What is a ”good enough” accuracy?
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10 Appendix

✓j = �j�1 for j = 1, 2, ...n, n+ 1, n+ 2, ...n+ n

P✓(Yi = yi|Xi = xi) =
1

1 + e�yi(�0+�T xi)

L(✓) =
mY

i=1

P✓(Yi = yi|Xi = xi)
mY

i=1

P (Xi = xi)

loss(✓) = �
mX

i=1

yi ⇤ log[P✓(Yi = 1|Xi = xi)] + (1� yi) ⇤ log[1� P✓(Yi = 1|Xi = xi)]

✓̂ = argmax
✓

L(✓)

= argmax
✓

log[L(✓)]

= argmax
✓

log[
mY

i=1

P✓(Yi = yi|Xi = xi)
mY

i=1

P (Xi = xi)]

= argmax
✓

mX

i=1

log[P✓(Yi = yi|Xi = xi)] +
mX

i=1

log[P (Xi = xi)]

= argmax
✓

mX

i=1

log[P✓(Yi = yi|Xi = xi)]

= argmax
✓

mX

i=1

yi ⇤ log[P✓(Yi = 1|Xi = xi)] + (1� yi) ⇤ log[P✓(Yi = 0|Xi = xi)]

= argmax
✓

mX

i=1

yi ⇤ log[P✓(Yi = 1|Xi = xi)] + (1� yi) ⇤ log[1� P✓(Yi = 1|Xi = xi)]

= argmin
✓

�
mX

i=1

yi ⇤ log[P✓(Yi = 1|Xi = xi)] + (1� yi) ⇤ log[1� P✓(Yi = 1|Xi = xi)]

= argmin
✓

loss(✓)

The steps above show how maximizing L(✓), AKA the logistic likelihood, is the same as minimizing loss(✓),
AKA the logistic loss. Recall, ✓ represents a vector where the first entry is �0 and the remaining entries
are the entries of our � vector. Additionally, recall that n represents the number of top stem features that
we select from positive and negative reviews. In this case, P✓(Yi = yi|Xi = xi) is the logistic probability
function, m is sample size, and ✓̂ is the ✓ which maximizes logistic likelihood / minimizes logistic loss.
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= �
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i

The steps above show how to derive rloss, AKA the logistic loss gradient, element-wise. For simplicity, we
have h✓(xi) represent the logistic probability function when Yi = 1. Recall, n represents the number of top

stem features that we select from positive and negative reviews. In addition to this, we define x̃
(j)
i , which

takes 1 if j is 1 and x
(j)
i otherwise. Given that h✓(xi) is a sigmoid function, we also utilized a chain rule

trick when calculating @h✓(xi)
@✓j

(Thavanani). Lastly, recall that ✓j is �j�1 for j = 1, 2, ...n, n+1, n+2, ...n+n

and m is sample size.
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12 Code

For PCA via the power method, we first utilized matrix-vector multiplication rather than matrix-matrix
multiplication to speed up the computation. We used parallel computing when generating the training data
set, test set, and corpus. Also, we used parallel computing for K-folds cross-validation and K-NN from one
to ten. Furthermore, for logistic gradient descent, we selected an appropriate initial guess and the largest
standard tolerance, as mentioned in the logistic regression description section, and we used the crossprod(x,y)
function to speed up convergence. Lastly, for the Euclidean Distance in our K-NN algorithm, we utilized
the norm(degree = 2), which uses the LAPACK package.
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Code Appendix

# GENERATE DATA FUNCTION
library("foreach") # Parallel Computing
library("doParallel") # Parallel Computing
registerDoParallel(detectCores())

generate_data = function(wd,size){

review_files_all = list.files(wd)

review_files = sample(review_files_all, size)

mat = foreach(i = review_files, .combine="rbind", .packages = "readr") %dopar% {

# rbind returns matrix
# readr package used for read_file()
rating_score = as.numeric(strsplit(gsub(".txt","",i),"_")[[1]][2])

if(rating_score >= 7){

c(read_file(paste(wd,i,sep = "/")),1) # 1 is pos
}else{

c(read_file(paste(wd,i,sep = "/")),0) # 0 is neg
}

}

df_raw = as.data.frame(mat)

rownames(df_raw) = 1:size

colnames(df_raw) = c("review", "rating")

df_raw$rating = as.integer(df_raw$rating)

return(df_raw)

}

# TRAIN DATA
#train_wd = "C:/Users/Josh Balingit/OneDrive/Desktop/STA 141C Train Set Combine"

# This contains all the training positive and negative reviews
#train_size = 2000
#set.seed(24)
#df_train_raw = generate_data(train_wd,train_size)
# TEST DATA
#test_wd = "C:/Users/Josh Balingit/OneDrive/Desktop/STA 141C Test Set Combine"

# This contains all the test positive and negative reviews
#test_size = 500
#set.seed(12)
#df_test_raw = generate_data(test_wd,test_size)
# FOR TEAMMATES TO ACCESS TRAIN AND TEST DATA
#setwd("C:/Users/Josh Balingit/OneDrive/Desktop/STA 141C Final Project")
#write.csv(df_train_raw,"df_train_raw.csv")
#write.csv(df_test_raw,"df_test_raw.csv")
# TRAIN SUMMARY
df = read.csv("df_train_raw.csv")

df = df[,!(colnames(df) %in% "X")]

mean(df$rating == 1) # Percent of Positive Reviews
mean(df$rating == 0) # Percent of Negative Reviews
# GENERATE CORPUS
library("tm") # Text Mining
library("SnowballC") # Text Stemming (Text Lemmatizing has issues with adverbs ending with "ly")
generate_corpus = function(reviews){

review_no_special = foreach(i = reviews, .combine = "rbind") %dopar% {

no_apostophe = gsub("�", "", i)

# Possessive : Jack�s to Jacks
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# Contraction : would�ve to wouldve
# Title : �Harry Potter� to Harry Potter

no_punctuation = gsub("[[:punct:]]", " ", no_apostophe)

}

corpus = Corpus(VectorSource(review_no_special))

corpus = tm_map(corpus, content_transformer(tolower))

corpus = tm_map(corpus, content_transformer(removeNumbers))

corpus = tm_map(corpus, removeWords, c(stopwords("english"), "film", "films", "movie", "movies"))

# Assume "film", "films", "movie", "movies" WON�T help distinguish
# They appear frequently across POS and NEG
# This is b/c data has reviews about film/movies in general

corpus = tm_map(corpus, stemDocument)

return(corpus)

}

# DOCUMENT TERM MATRIX WITH TF-IDF WEIGHT ON TRAIN DATA
corpus = generate_corpus(df$review)

td = DocumentTermMatrix(corpus)

train_terms = Terms(td)

td = td[,sort(train_terms)]

train_idf = log2(nDocs(td)/colSums(as.matrix(td>0)))

mat_td = t(t(as.matrix(td))*train_idf)

mat_td_std = scale(mat_td)

# Standardizing columns with mean 0 and sd 1 is necessary for PCA
# With mean 0, we can use SVD decomposition (A. Chandler MAT 167)
# With sd 1, we prevent variance of each variable from being inflated/deflated (E. Furfaro STA 141A)
# Empirically shown to lead to faster convergence for gradient descent (K. Balasubramanian STA 142A)

# WORD CLOUD ON TRAIN DATA
library("wordcloud") # Word Cloud Graph
library("RColorBrewer") # Word Cloud Color Palettes
word_cloud_visual = function(rating,max_words,color_gradient){

mat_td_rating = mat_td_std[df$rating == rating,]

stem = colnames(mat_td_rating)

stem_size = colSums(mat_td_rating)

# In this case, size does NOT refer to stem frequency across documents
# We are taking column sums as a measure to compare stem given some rating

# LARGE column sums => Stem is connected to rating
# SMALL column sums => Stem is NOT connected to rating

wc_plot = wordcloud(words = stem,

freq = stem_size,

max.words=max_words,

random.order=F,

colors = color_gradient,

scale = c(2,.1))

print(wc_plot)

}

word_cloud_visual(1,100,c("lightgreen","green2","green4"))

word_cloud_visual(0,100,c("lightpink","red2","red4"))

# POWER METHOD FUNCTION TO FIND SINGULAR VALUES
singular_vals_power_method = function(num_pc,num_iter,q0,X){

A = tcrossprod(X)

u_vecs = c()

eigenval = c()

for(j in 1:num_pc){
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q = as.matrix(q0,nrow = u_length)

for(i in 1:num_iter){

z = A%*%q[,i]

q = cbind(q,z/norm(z,type = "2"))

if(min(norm(q[,i+1]-q[,i],type = "2"),

norm(q[,i+1]+q[,i],type = "2")) < 1e-6){

cat("Convergence at trial", i, "\n")

break
}

}

u_vecs = cbind(u_vecs,q[,ncol(q)])

eigenval = append(eigenval,crossprod(u_vecs[,j],X)%*%crossprod(X,u_vecs[,j]))

# (A%*%B)%*%x cost more flops than A%*%(B%*%x)
# eigenval of tcrossprod(mat_td_std)
# sqrt(eigenval) of tcrossprod(mat_td_std) = singval of mat_td_std

A = A - eigenval[j]*tcrossprod(u_vecs[,j])

}

return(sqrt(eigenval))

}

# Power Method is used to find eigenvalues of A
# If A is Xt_X, then square root of eigenvalues of A are singular values of X

## GGPLOT FOR DATA VISUALIZATION

library("ggplot2")

# SIMULATION FOR PCA
# TO TEST IF POWER METHOD FUNCTION WORKS
# TO ILLUSTRATE ISSUE OF PCA WITH TRAIN DATA

pca_sim = function(X_sim){

# Plot of x1 vs x2
plot_x1_x2 = ggplot(data=as.data.frame(X_sim))+

geom_point(aes(x=x1_sim,y=x2_sim))+

labs(x="x1 (scaled)",y="x2 (scaled)")+

theme_bw()

num_pc_sim = 2

num_iter_sim = 10000

u_length_sim = nrow(X_sim)

z0_sim = rep(1,times=u_length_sim)

q0_sim = z0_sim/norm(z0_sim,type = "2")

singular_vals_sim = singular_vals_power_method(num_pc_sim,num_iter_sim,q0_sim,X_sim)

# Plot of i vs ith singular value
plot_i_sv = ggplot(data=data.frame("num_pc"=1:num_pc_sim,"singular_vals"=singular_vals_sim))+

geom_point(aes(x=num_pc,y=singular_vals))+

ylim(c(0,max(singular_vals_sim)+1))+

labs(x="index i",y="ith singular value")+

theme_bw()

print(plot_x1_x2)

print(plot_i_sv)

}

# CASE 1: HIGH CORRELATED COVARIATES
set.seed(1)

x1_sim = runif(100,min=-10,max=10)

x2_sim = 0.5*x1_sim + rnorm(100,mean=0,sd=1)

X_sim = scale(cbind(x1_sim,x2_sim))

pca_sim(X_sim)
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# CASE 2: WEAK CORRELATED COVARIATES
set.seed(2)

x1_sim = runif(100,min=-10,max=10)

x2_sim = 0.05*x1_sim + rnorm(100,mean=0,sd=1)

X_sim = scale(cbind(x1_sim,x2_sim))

pca_sim(X_sim)

# PCA ( NOTE: TOO LONG TO RUN)
num_pc = 30

num_iter = 10000

u_length = nrow(mat_td_std)

z0 = rep(1, times = u_length)

q0 = z0/norm(z0,type = "2")

singular_vals = singular_vals_power_method(num_pc,num_iter,q0,mat_td_std)

ggplot(data=data.frame("num_pc"=1:num_pc,"singular_vals"=singular_vals))+

geom_point(aes(x=num_pc,y=singular_vals))+

ylim(c(0,max(singular_vals)+1))+

labs(x="principal component index",y="singular value")+

theme_bw()

# Based on simulation for PCA,
# Weak Correlated Variables in mat_td_std
# Points of mat_td_std "look less correlated" given Dimension of mat_td_std is large
# Correlation is likely "hidden" by addition "noise" stem terms

# GRADIENT DESCENT FUNCTION FOR LOGISTIC REGRESSION
exp_neg_X_beta = function(X,beta){

exp = exp(-X%*%beta)

# To prevent underflow
smallest_double = .Machine$double.eps

exp = ifelse(exp < smallest_double, smallest_double,exp)

return(exp)

}

h_beta = function(X,beta){

return(1/(1+exp_neg_X_beta(X,beta)))

}

loss = function(y,X,beta){

return(-sum(y*log(h_beta(X,beta))+

(1-y)*log(1-h_beta(X,beta))))

}

gradient_descent = function(X,y,num_iter,tol,alpha,beta_vecs){

for(i in 1:num_iter){

h_y = h_beta(X,beta_vecs[,i]) - y

gradient = crossprod(X,h_y)

beta_vec_new = beta_vecs[,i] - alpha*gradient

# While loss increase, descrease learning rate (Assistance From ChatGPT)
if(loss(y,X,beta_vec_new) > loss(y,X,beta_vecs[,i])) {

alpha = alpha / 2

}

beta_vecs = cbind(beta_vecs,beta_vec_new)

if(norm(beta_vecs[,i+1]-beta_vecs[,i],type = "2") < tol){

converge_trial = i
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return(list("beta" = beta_vecs[,ncol(beta_vecs)],

"converge_trial" = converge_trial))

}

}

return(list("beta" = beta_vecs[,ncol(beta_vecs)],

"converge_trial" = "NO CONVERGE"))

}

# TEST RESULTS FOR LOGISTIC REGRESSION
test_results_logistic = function(X_test,y_test,beta_hat_train,n){

log_odds_pred = X_test%*%beta_hat_train

y_pred = ifelse(log_odds_pred >= 0, 1, 0)

o_v_p = table("observed" = y_test,"predicted" = y_pred)

error_rate = mean(y_test != y_pred)

return(list("o_v_p" = o_v_p,

"error_rate" = error_rate))

}

# SIMULATION FOR GRADIENT DESCENT FOR LOGISTIC REGRESSION
# TO TEST IF GRADIENT DESCENT FUNCTION FOR LOGISTIC REGRESSION WORKS

gd_logisitic_sim = function(X_scale_sim,y_sim){

n = nrow(X_scale_sim)

p = ncol(X_scale_sim)

# CREATE 80% TRAIN AND 20% TEST SPLIT
test_index_sim = sample(1:n,size=n/5)

X_test_sim = X_scale_sim[test_index_sim,]

y_test_sim = y_sim[test_index_sim]

train_index_sim = -test_index_sim

X_train_sim = X_scale_sim[train_index_sim,]

y_train_sim = y_sim[train_index_sim]

# FIT LOGISTIC MODEL USING GRADIENT DESCENT WITH TRAIN
num_iter_sim = 100000

tol_sim = 1e-6

alpha_sim = 0.1

beta_vec_0_sim = rep(0,times=p)

beta_vecs_sim = as.matrix(beta_vec_0_sim)

gd_results_sim = gradient_descent(X_train_sim,y_train_sim,num_iter_sim,tol_sim,alpha_sim,beta_vecs_sim)

beta_hat_train_sim = gd_results_sim$beta

# CALCULATE TEST ERROR RATE USING TRAIN LOGISTIC MODEL
test_results_sim = test_results_logistic(X_test_sim,y_test_sim,beta_hat_train_sim,n=length(y_test_sim))

error_rate_sim = test_results_sim$error_rate

# VISUAL OF TEST DATA POINTS WITH TRAIN DECISION BOUNDARY
plot_sim = ggplot(data=data.frame("x1"=X_test_sim[,2],"x2"=X_test_sim[,3],"y"=as.factor(y_test_sim)))+

geom_point(aes(x=x1,y=x2,col=y,shape=y))+

scale_color_manual(values = c("red","green"))+

geom_abline(intercept = -beta_hat_train_sim[1]/beta_hat_train_sim[3],

slope=-beta_hat_train_sim[2]/beta_hat_train_sim[3])+

labs(x="x1 (scaled)",y="x2 (scaled)")+

theme_bw()

# SUMMARY
cat("Train Beta is", beta_hat_train_sim, "\n")

cat("Test Error Rate using Train Model is", error_rate_sim)

print(plot_sim)

}

# CASE 1: GENERATE DATA BASED ON LINEAR DECISION BOUNDARY AND LOGISITIC PROBABILITIES
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set.seed(3)

beta_sim = c(1,2,4)

xs_sim = sapply(1:2,function(i){

return(runif(1000,min=-10,max=10))

})

X_sim = cbind(1,xs_sim[,1],xs_sim[,2])

prob_y_1_sim = h_beta(X_sim,beta_sim)

y_sim = sapply(prob_y_1_sim,function(i){

return(rbinom(n=1,size=1,prob=i))

})

X_scale_sim = cbind(1,scale(X_sim[,2:ncol(X_sim)]))

gd_logisitic_sim(X_scale_sim,y_sim)

# TEST error is LOW
# This makes sense because our data was generated based on logistic regression assumption

# TRAIN beta does NOT equal TRUE beta
# This makes sense because we scaled our data
# This is fine because our goal is to NOT estimate TRUE beta
# This is fine because our goal is to have LOW TEST error

# CASE 2: GENERATE DATA BASED ON EXPONENTIAL DECISION BOUNDARY AND ARCTAN PROBABILITES
set.seed(4)

xs_sim = sapply(1:2,function(i){

return(runif(1000,min=-10,max=10))

})

model_sim = -4+2*exp(xs_sim[,1])-xs_sim[,2]

prob_y_1_sim = (atan(model_sim)+pi/2)/pi

y_sim = sapply(prob_y_1_sim,function(i){

return(rbinom(n=1,size=1,prob=i))

})

X_scale_sim = cbind(1,scale(cbind(xs_sim[,1],xs_sim[,2])))

gd_logisitic_sim(X_scale_sim,y_sim)

# TEST error is HIGHER
# This makes sense because our data was NOT generated based on logistic regression assumption

# GENERATE STANDARDIZED DATA WITH RATING COLUMN (REDUCED TO TOP POS AND NEG STEM)
generate_df_std_red = function(stem_size_each,mat_td_std,rating){

top_stem_each = sapply(0:1,function(i){

mat_td_rating = mat_td_std[df$rating == i,]

stem = colnames(mat_td_rating)

stem_size = colSums(mat_td_rating)

stem_top = head(stem[order(stem_size,decreasing = T)],stem_size_each)

stem_top

})

stem1_top = top_stem_each[,2]

stem0_top = top_stem_each[,1]

top_stem = c(stem1_top[!(stem1_top %in% stem0_top)],

stem0_top[!(stem0_top %in% stem1_top)])

# Remove intersection between two ratings
stem1_num = sum(stem1_top %in% top_stem)

stem0_num = sum(stem0_top %in% top_stem)

mat_td_std_red = mat_td_std[,top_stem]

# Head stem_size_each columns are pos
# Tail stem_size_each columns are neg

df_std_red = as.data.frame(mat_td_std_red)

df_std_red = cbind("beta0" = 1,df_std_red)
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df_std_red$rating = rating

return(list("df_std_red" = df_std_red,

"top_stem" = top_stem,

"stem1_num" = stem1_num,

"stem0_num" = stem0_num))

}

# TRAIN STANDARDIZED DATA WITH RATING COLUMN (REDUCED TO TOP POS AND NEG STEM)
start = proc.time()

test_error_rate_estimates = foreach(stem_size_each = c(400,600,800,1000),.combine = "rbind", .packages = c("foreach","doParallel"))%dopar%{

df_std_red_results = generate_df_std_red(stem_size_each,mat_td_std,df$rating)

df_std_red = df_std_red_results$df_std_red

top_stem = df_std_red_results$top_stem

stem1_num = df_std_red_results$stem1_num

stem0_num = df_std_red_results$stem0_num

# Extract stem size for each rating again b/c function removes intersection between two ratings
num_betas = 1 + stem1_num + stem0_num

# 1 b/c of intercept
# K-FOLDS CROSS VALIDATION WITH GRADIENT DESCENT FOR LOGISTIC REGRESSION
k_folds = 5

k_sizes = nrow(df_std_red)/k_folds

k_labels = rep(1:k_folds,each=k_sizes)

k_df = split(df_std_red, k_labels)

# By converting to mat_td_std_red to df_std_red, I preserve row and column names
k_error_rate_valid = foreach(i=1:k_folds,.combine = "rbind")%dopar%{

df_train_valid = k_df[[i]]

X_train_valid = as.matrix(df_train_valid[,-(num_betas+1)])

y_train_valid = df_train_valid[,(num_betas+1)]

df_train_valid_index = as.integer(rownames(k_df[[i]]))

df_train_fit = df_std_red[-df_train_valid_index,]

X_train_fit = as.matrix(df_train_fit[,-(num_betas+1)])

y_train_fit = df_train_fit[,(num_betas+1)]

num_iter = 10000

tol = 1e-3

alpha = 0.01

beta_vec_0 = c(0,rep(c(1,-1),times=c(stem1_num,stem0_num)))

# log(p1/p0) = beta_0 + beta_1*x_1 + ... beta_(stem1_num+stem0_num)*x_(stem1_num+stem0_num)
# log(p1/p0) > 0 <=> Pos Review <=> beta_i for i = 1, ... stem1_num are Pos
# log(p1/p0) < 0 <=> Neg Review <=> beta_i for i = stem1_num+1, ... stem1_num+stem0_num are Neg

beta_vecs = as.matrix(beta_vec_0)

gd_results = gradient_descent(X_train_fit,y_train_fit,num_iter,tol,alpha,beta_vecs)

beta_hat_fit = gd_results$beta

test_results = test_results_logistic(X_train_valid,y_train_valid,beta_hat_fit,k_sizes)

error_rate = test_results$error_rate

error_rate

}

test_error_rate_estimate = mean(k_error_rate_valid)

test_error_rate_estimate

}

end = proc.time()

end-start

# FIT LOGISTIC REGRESSION WITH TRAIN SET WITH CERTAIN NUM OF STEM
stem_size_each = 1000

# Yield lowest CV error
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df_std_red_results = generate_df_std_red(stem_size_each,mat_td_std,df$rating)

df_std_red = df_std_red_results$df_std_red

top_stem = df_std_red_results$top_stem

stem1_num = df_std_red_results$stem1_num

stem0_num = df_std_red_results$stem0_num

# Extract stem size for each rating again b/c function removes intersection between two ratings
num_betas = 1 + stem1_num + stem0_num

df_train = df_std_red

X_train = as.matrix(df_train[,-(num_betas+1)])

y_train = df_train[,(num_betas+1)]

num_iter = 10000

tol = 1e-3

alpha = 0.01

beta_vec_0 = c(0,rep(c(1,-1),times=c(stem1_num,stem0_num)))

# log(p1/p0) = beta_1*x_1 + ... beta_(stem1_num+stem0_num)*x_(stem1_num+stem0_num)
# log(p1/p0) > 0 <=> Pos Review <=> beta_i for i = 1, ... stem1_num are Pos
# log(p1/p0) < 0 <=> Neg Review <=> beta_i for i = stem1_num+1, ... stem1_num+stem0_num are Neg

beta_vecs = as.matrix(beta_vec_0)

start = proc.time()

gd_results = gradient_descent(X_train,y_train,num_iter,tol,alpha,beta_vecs)

end = proc.time()

time_info = end - start

time_passed = time_info["elapsed"]

print(time_passed)

beta_hat_train = gd_results$beta

# TEST SUMMARY
df_test = read.csv("df_test_raw.csv")

df_test = df_test[,!(colnames(df_test) %in% "X")]

mean(df_test$rating == 1)

mean(df_test$rating == 0)

# CONVERTING TEST SET IN TERMS OF TRAIN SET
# Code between was created with assitance from ChatGPT
corpus_test = generate_corpus(df_test$review)

td_test = DocumentTermMatrix(corpus_test, control = list(dictionary = train_terms))

td_test = td_test[,sort(train_terms)]

mat_td_test = t(t(as.matrix(td_test))*train_idf)

mat_td_std_test = scale(mat_td_test, center = colMeans(mat_td), scale = apply(mat_td, 2, sd))

# Code between was created with assitance from ChatGPT
X_test = cbind("beta0" = 1,mat_td_std_test[,top_stem])

# Head stem_size_each columns are pos
# Tail stem_size_each columns are neg

y_test = df_test$rating

# LOGISTIC REGRESSION EVALUATION
test_results = test_results_logistic(X_test,y_test,beta_hat_train,test_size)

error_rate = test_results$error_rate

print(error_rate)

#Function 1: Euclidean Distance
#Calculate the euclidean distance between a single row in test data (1x2, excluding the binary label)
#to a single row in the train data (1x2, excluding the binary label)
euclidean_distance <- function(row, train_data) {

apply(train_data, 1, function(train_row) norm(row - train_row, type = �2�))

}
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#Function 2: KNN
#This function takes a row of the test matrix and the entire training data matrix,
#calculate the distance between that row to the entire training data matrix,
#we should have a vector with length of 800 for distance. Then, we look at the
#label of the nearest neighbors, and make the decision
knn_predict <- function(train_data, test_data_point, k, cl){

# Calculate distance between test data and all train data
distances <- apply(test_data_point,1,euclidean_distance,train_data[,-3]) #800
# Sort distance to find the closest ones (number of k)
neighbors <- train_data[order(distances), ][1:k,3] #k x 3
# Predict the class of the test data point as the majority class among the neighbors
ifelse(sum(neighbors) > k/2, 1, 0) #use the nearest neighbor to make prediction, length of 1

}

#Case 1 Stimulation / Logistic
set.seed(3)

#Data generate section
#Functions for data generating process
h_beta = function(X,beta){

return(1/(1+exp_neg_X_beta(X,beta)))

}

exp_neg_X_beta = function(X,beta){

exp = exp(-X%*%beta)

# To prevent underflow
smallest_double = .Machine$double.eps

exp = ifelse(exp < smallest_double, smallest_double,exp)

return(exp)

}

#Data generate
beta_sim = c(1,2,4)

xs_sim = sapply(1:2,function(i){

return(runif(1000,min=-10,max=10))

})

X_sim = cbind(1,xs_sim[,1],xs_sim[,2])

prob_y_1_sim = h_beta(X_sim,beta_sim)

y_sim = sapply(prob_y_1_sim,function(i){

return(rbinom(n=1,size=1,prob=i))

})

X_scale_sim = scale(X_sim[,2:ncol(X_sim)])

#Dotpot that display the distribution of the stimulation data
ggplot(data = data.frame("x1"=X_scale_sim[,1],"x2"=X_scale_sim[,2],"y"=as.factor(y_sim)))+

geom_point(aes(x=x1,y=x2,col=y,shape=y))+

scale_color_manual(values = c("red","green"))+

labs(x="x1",y="x2")+

theme_bw()

#Rescale data
#X_scale_sim = scale(X_sim)
test_index_sim = sample(1:1000,size = 200)

X_test_sim = X_scale_sim[test_index_sim,] #test dataset
y_test_sim = y_sim[test_index_sim] #test dataset
train_index_sim = -test_index_sim
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X_train_sim = X_scale_sim[train_index_sim,] #train dataset
y_train_sim = y_sim[train_index_sim] #train dataset

#Combine x and y
train_data_sim = cbind(X_train_sim,y_train_sim)

test_data_sim=cbind(X_test_sim,y_test_sim)

#This is a for loop to check the error rates for the k we want
error_rates <- c() # create an empty vector to store the error rates
for (k in 1:10) {

knn_predictions <- sapply(seq_len(nrow(test_data_sim)), function(i) {

knn_predict(train_data = train_data_sim, test_data_sim[i, 1:2, drop = FALSE], k, cl)

})

actual <- test_data_sim[,3]

error_rate <- mean(knn_predictions != actual)

error_rates[k] <- error_rate # store the error rate for this k value in the error_rates vector
}

plot(1:10, error_rates, type="l", xlab="k", ylab="Test error")

#Case 2 Stimulation / KNN
set.seed(4)

#Data generate section
xs_sim = sapply(1:2,function(i){

return(runif(1000,min=-10,max=10))

})

model_sim = -4+2*exp(xs_sim[,1])-xs_sim[,2]

prob_y_1_sim = (atan(model_sim)+pi/2)/pi

y_sim = sapply(prob_y_1_sim,function(i){

return(rbinom(n=1,size=1,prob=i))

})

X_sim = cbind(xs_sim[,1],xs_sim[,2])

#Dotpot that display the distribution of the stimulation data
ggplot(data = data.frame("x1"=X_sim[,1],"x2"=X_sim[,2],"y"=as.factor(y_sim)))+

geom_point(aes(x=x1,y=x2,col=y,shape=y))+

scale_color_manual(values = c("red","green"))+

labs(x="x1",y="x2")+

theme_bw()

#Rescale data
X_scale_sim = scale(X_sim)

test_index_sim = sample(1:1000,size = 200)

X_test_sim = X_scale_sim[test_index_sim,] #test dataset
y_test_sim = y_sim[test_index_sim] #test dataset
train_index_sim = -test_index_sim

X_train_sim = X_scale_sim[train_index_sim,] #train dataset
y_train_sim = y_sim[train_index_sim] #train dataset

#Combine x and y
train_data_sim = cbind(X_train_sim,y_train_sim)

test_data_sim =cbind(X_test_sim,y_test_sim)

#This is a for loop to check the error rates for the k we want
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error_rates <- c() # create an empty vector to store the error rates
for (k in 1:10) {

knn_predictions <- sapply(seq_len(nrow(test_data_sim)), function(i) {

knn_predict(train_data = train_data_sim, test_data_sim[i, 1:2, drop = FALSE], k, cl)

})

actual <- test_data_sim[,3]

error_rate <- mean(knn_predictions != actual)

error_rates[k] <- error_rate # store the error rate for this k value in the error_rates vector
}

plot(1:10, error_rates, type="l", xlab="k", ylab="Test error")

#KNN functions 3
euclidean_distance <- function(row, train_data) {

#uses the apply function to apply a function that computes the Euclidean distance
#between row and each row of train_data using the norm function with type = �2�.

apply(train_data, 1, function(train_row) norm(row - train_row, type = �2�))

}

#KNN function 4
knn_predict <- function(train_data, test_data_point, k){

# Calculate distance between test data and all train data
distances <- apply(test_data_point,1,euclidean_distance,train_data[,-train_data_rating_index]) #800
# Sort distance to find the closest ones (number of k)
neighbors <- train_data[order(distances), ][1:k,201] #k x 3
# Predict the class of the test data point as the majority class among the neighbors
ifelse(sum(neighbors) > k/2, 1, 0) #use the nearest neighbor to make prediction, length of 1

}

#Start: Data set up
#Document term matrix with TF-IDF Weight on Train Data
df = read.csv("/Users/lucchen/Desktop/STA 141C/Final project/df_train_raw.csv")

df = df[,!(colnames(df) %in% "X")]

#Corpus
corpus = generate_corpus(df$review)

td = DocumentTermMatrix(corpus)

train_terms = Terms(td)

td = td[,sort(train_terms)]

train_idf = log2(nDocs(td)/colSums(as.matrix(td>0)))

mat_td = t(t(as.matrix(td))*train_idf)

mat_td_std = scale(mat_td)

# TRAIN STANDARDIZED DATA WITH RATING COLUMN (REDUCED TO TOP POS AND NEG STEM)
stem_size_each = 100

df_std_red_results = generate_df_std_red(stem_size_each,mat_td_std,df$rating)

df_std_red = df_std_red_results$df_std_red[,-1]

top_stem = df_std_red_results$top_stem

stem1_num = df_std_red_results$stem1_num

stem0_num = df_std_red_results$stem0_num

# Extract stem size for each rating again b/c function removes intersection between two ratings
num_of_stems = stem1_num + stem0_num

# 1 b/c of intercept

y_train_index = which(names(df_std_red) == "rating") #column index of the rating column or the y_train
X_train = as.matrix(df_std_red[,-y_train_index]) #X_train as KNN input
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y_train = as.matrix(df_std_red[,y_train_index]) #y_train as KNN input
colnames(y_train) = "rating"

train_data = cbind(X_train,y_train)

train_data_rating_index = which(colnames(train_data)=="rating")

#### Cross Validation ####

k_folds=5

k_sizes=nrow(df_std_red)/k_folds

k_labels = rep(1:k_folds,each=k_sizes)

k_df = split(df_std_red, k_labels)

error_list = c()

# Set up a parallel backend with multiple cores
cl <- makeCluster(detectCores())

registerDoParallel(cl)

start = proc.time()

k_error_rate_list <- foreach(k=1:10, .combine="c", .packages = c("foreach","doParallel")) %dopar% {

k_error_rate_valid_list <- foreach(i=1:k_folds, .combine="c", .packages = c("foreach","doParallel")) %dopar% {

# retrieves the training and validation data for the i-th fold from a list k_df.
df_train_valid <- k_df[[i]]

# split the training and validation data into predictors (X_train_valid) and response (y_train_valid)
X_train_valid <- as.matrix(df_train_valid[,-(num_of_stems+1)])

y_train_valid <- df_train_valid[,(num_of_stems+1)]

# extracts the row indices of the training and validation data.
df_train_valid_index <- as.integer(rownames(k_df[[i]]))

# creates the training data by removing the validation data from the full data set df_std_red.
df_train_fit <- df_std_red[-df_train_valid_index,]

# split the training data into predictors (X_train_fit) and response (y_train_fit).
X_train_fit <- as.matrix(df_train_fit[,-(num_of_stems+1)])

y_train_fit <- df_train_fit[,(num_of_stems+1)]

# apply the knn_predict function to each row of the validation data df_train_valid by parallel computing
# train_data is the training data, test_data_point is a single row of the validation data, and k is the number of
# nearest neighbors to consider.
knn_predictions_list <- foreach(j = seq_len(nrow(df_train_valid)), .combine = "c") %dopar% {

knn_predict(train_data = df_train_fit, test_data_point = df_train_valid[j, -ncol(df_train_valid), drop = FALSE], k)

}

# compute the error rate for the current fold by comparing the predicted
# ratings (knn_predictions) to the actual ratings (actual) and taking the mean of the resulting logical vector.
actual <- df$rating[df_train_valid_index]

error <- mean(knn_predictions_list != actual)

error #error list
}

mean(k_error_rate_valid_list) #mean error rate for k-fold
}

stopCluster(cl)

# plot the 10 error rates
plot(1:10, k_error_rate_list, type="l", xlab="Number of nearest neighbors (k)", ylab="Test error rate (%)")

end = proc.time()

time_info = end - start

time_passed = time_info["elapsed"]

print(time_passed)
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#Start: Data set up
#Document term matrix with TF-IDF Weight on Train Data
df = read.csv("/Users/lucchen/Desktop/STA 141C/Final project/df_train_raw.csv")

df = df[,!(colnames(df) %in% "X")]

df_test = read.csv("/Users/lucchen/Desktop/STA 141C/Final project/df_test_raw.csv")

df_test = df_test[,!(colnames(df_test) %in% "X")]

#Corpus
registerDoParallel(detectCores())

corpus = generate_corpus(df$review)

td = DocumentTermMatrix(corpus)

train_terms = Terms(td)

td = td[,sort(train_terms)]

train_idf = log2(nDocs(td)/colSums(as.matrix(td>0)))

mat_td = t(t(as.matrix(td))*train_idf)

mat_td_std = scale(mat_td)

#Stems
stem_size_each = 100 #This is our hyperparameter
df_std_red_results = generate_df_std_red(stem_size_each,mat_td_std,df$rating)

df_std_red = df_std_red_results$df_std_red

df_std_red = df_std_red[,-1] #This one is the X_train and y_train, sepearate them into X_train,y_train
top_stem = df_std_red_results$top_stem

y_train_index = which(names(df_std_red) == "rating") #column index of the rating column or the y_train
X_train = as.matrix(df_std_red[,-y_train_index]) #X_train as KNN input
y_train = as.matrix(df_std_red[,y_train_index]) #y_train as KNN input
colnames(y_train) = "rating"

#Converting test set in terms of Train Set
corpus_test = generate_corpus(df_test$review)

td_test = DocumentTermMatrix(corpus_test,control = list(dictionary = train_terms))

td_test = td_test[,sort(train_terms)]

mat_td_test = t(t(as.matrix(td_test))*train_idf)

mat_td_std_test = scale(mat_td_test,center = colMeans(mat_td),scale = apply(mat_td,2,sd))

X_test = as.matrix(mat_td_std_test[,top_stem]) #X_test as KNN input
y_test = as.matrix(df_test$rating) #y_test as KNN input
colnames(y_test) = "rating"

# Set up a parallel backend with multiple cores
cl <- makeCluster(detectCores())

registerDoParallel(cl)

#Apply KNN to our dataest (Starting of the algorithm)
train_data = cbind(X_train,y_train)

test_data = cbind(X_test,y_test)

train_data_rating_index = which(colnames(train_data)=="rating")

test_data_rating_index = which(colnames(test_data)=="rating")

##############Stemming size =100, K=8##################################

start = proc.time()

knn_predictions_list <- foreach(j = seq_len(nrow(test_data)), .combine = "c") %dopar% {

knn_predict(train_data = train_data, test_data_point = test_data[j, -ncol(test_data), drop = FALSE], k=8)
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}

actual <- test_data[, ncol(test_data)]

mean(knn_predictions_list != actual)

end = proc.time()

time_info = end - start

time_passed = time_info["elapsed"]

print(time_passed)
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